
! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 1

A.X. The optional Cross-compiler word set

A.x.1 Introduction
This optional wordset is based upon standards jointly developed and used by two independent
suppliers of commercial Forth cross-compilers, Microprocessor Engineering Ltd. (MPE) and
FORTH, Inc. This technology has been in field use since 1996.

As noted in x.1 Introduction, use of this wordset can rarely ensure perfect portability between
different targets, but it can make it easier by standardizing notation for common functions.

It is not intended (nor considered desirable) for a Forth system to employ or provide this wordset
unless it is designed specifically as a cross-compiler.

Similarly, it is not intended (nor considered desirable) that a program employ this wordset unless
it is specifically designed to be run in a cross-compiled environment. It is our hope that
modifying a program intended for a standard Forth system to be cross-compiled will be a
straightforward process using this wordset.

Specific issues needing to be addressed by standard programs in order to be cross-compiled
include:

- memory sections must be defined as described in x.3.2.2.1 Defining Sections.

- compiler directives (IMMEDIATE words) must be defined in COMPILER scope. It’s
advisable to group any such words for convenience.

- application-specific data types (if any) must be defined in INTERPRETER scope.

- the program must never attempt to store values into a VARIABLE or 2VARIABLE or
otherwise attempt to write to UData at compile time (e.g., in source code).

- the program must never attempt to execute a target colon definition at compile time (e.g., in
source code).

- the program must not attempt to execute at compile time (e.g., in source code) target-specific
behavior of application-specific data types (other than simple return of the data field address)
unless such behavior is also defined for INTERPRETER scope.

We note that many cross compilers now available, including those from MPE and FORTH, Inc.,
provide features considerably beyond the minimum requirements specified herein. It is the
intention of this standard to establish a basic set of entitlements that developers of cross-compiled
applications may expect, and which implementors can readily support.

A.x.2 Additional terms and notation

A.x.2.1 Definitions of terms
compiling words: The intent is to include words such as , (comma), ALLOT, and compiler
directives such as IF that modify the content of definitions. Note that its logical companion,
“defining words,” is already defined in 2.1 Definitions of terms.

searching words: This category includes such words as FIND, ', and ['].

The reason for defining these categories of words is to specify that they are required on the host
but not the target.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 2

A.x.3 Additional usage requirements

A.x.3.1 Scopes
A scope is not a search order, although search orders are commonly used to implement scopes.
When implemented using the Search Order wordset, scopes normally specify a search order, as
well as the compilation wordlist. Special words within some scopes, such as INTERPRETER’s :
(colon) and COMPILER’s DOES> and ; (semicolon) may set different search orders. Possible
implementation examples are given in Table 1 and with each scope below.

Table 1: Example of search orders in scopes

Scope Compilation wordlist Interpreting search order Compiling search order
HOST FORTH FORTH FORTH
INTERPRETER *INTERPRETER FORTH

*INTERPRETER
*INTERPRETER
FORTH

COMPILER *COMPILER FORTH FORTH
TARGET *TARGET *INTERPRETER

*TARGET
*COMPILER
*TARGET

A.x.3.1.1 HOST Scope

When implemented using the Search Order wordset, a typical search order might consist of
FORTH (only) with a compilation wordlist of FORTH. HOST scope is used extremely rarely, for
custom additions to a cross-compiler.

A.x.3.1.2 INTERPRETER Scope

When implemented using the Search Order wordset, a typical search order might consist of
*INTERPRETER, FORTH (where *INTERPRETER is the wordlist containing the words peculiar
to this scope) with a compilation wordlist of *INTERPRETER.

Standard data objects defined in TARGET scope are also available in the *INTERPRETER
wordlist. This enables objects defined using standard data defining words to be referenced
interpretively as well as inside TARGET definitions, as required. This feature is necessary in
order that, for example, variables may be referenced in assembler code. Note, however, that the
entitlement of invoking a target data object in INTERPRETER scope is limited to the standard
words that return the address of the object’s target data space; if you have defined a special target
behavior for a class of data objects the special behavior is not available interpretively on the host.
A possible workaround for this would be to define a synonym in INTERPRETER scope that
emulates the special behavior.

The INTERPRETER version of ' is restricted to searching TARGET definitions only. This is
important so that, for example, you can assemble a branch to a target word. If you need a search-
order-dependent version, you must use the HOST ' .

INTERPRETER scope is used commonly for defining SECTIONs and EQUs that will control the
compilation of the target program, for defining custom TARGET defining words, and for other
target configuration actions.

A.x.3.1.3 COMPILER Scope

When implemented using the Search Order wordset, a typical search order might consist of
FORTH (only) with a compilation wordlist of *COMPILER (where *COMPILER is the wordlist
containing the words peculiar to this scope). This has the effect of making the host words
available to construct the cross-compiler’s compiler directives.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 3

The action of the INTERPRETER version of : (which constructs a TARGET definition) might be
to set the search order to *TARGET, *COMPILER. This has the effect of making the COMPILER
words (as well as references to other target words) visible inside the target definition without
having to be IMMEDIATE. The COMPILER version of ; would reset the search order to its
normal state in TARGET scope.

It is also common for the COMPILER version of DOES> to set a search order of *TARGET,
*COMPILER, because the words following DOES> must be target words.

The word IMMEDIATE (6.1.1710) is inappropriate in this context. The reason is that it is used
after a word is defined, and the number of things that may need to be changed is too great for an
after-the-fact fixup to be practical.

COMPILER scope is used rarely in applications, for defining custom target compiler directives.

A.x.3.1.4 TARGET Scope

TARGET scope is where virtually all application programming takes place.

When implemented using the Search Order wordset, a typical search order might consist of
*INTERPRETER (only) with a compilation wordlist of *TARGET (where *TARGET is the
wordlist containing the words peculiar to this scope).

It may seem surprising that TARGET words aren’t available in TARGET scope. The reason is
that words are being executed, and TARGET words can’t be executed on the host! Many cross
compilers support an interactive testing environment in which TARGET words may be typed on
the host and executed by a simulator or target device connected to the host, but this standard does
not require or assume such a capability.

A.x.3.2 Data space management
A cross compiler is concerned with managing target data space. This standard provides no
access to host data space except through the HOST memory reference words. During the
compiling process, target address space used for CData and IData sections is mapped to host
physical resources (e.g., memory or disk) by implementation-dependent mechanisms, however
this is intended to be transparent to the application programmer.

CData was originally conceived as “code space” used by the cross-compiler to build its program
image, and that is still its primary purpose. It is also a useful place to put read-only data (e.g.,
tables of coefficients for a function). Since embedded targets commonly run from PROM or flash
(or use PROM or flash to store a program image which is transparently run from RAM) it is
convenient for the compiler to segregate code and data space.

For many reasons, it is not possible for applications to portably manipulate code space, so ANS
Forth has always confined program access to data space (cf. 3.3.3 Data Space). Therefore, the
only practical program use for CData is as “constant data” storage. Nonetheless, it is well to
remember that the cross compiler will very likely be placing program information there. Note
especially the fact that x.3.3.3.2 Contiguous regions terminates a contiguous region by “defining
the next object in that section type” ó that “next object” isn’t necessarily a data object, but may
be an executable definition if the section type is CData.

The fact that this standard makes provision for defining code and data spaces separately doesn’t
necessarily imply that they have to be separate. Note that x.3.2.2 Memory Sections requires that
sections of the same type must not overlap, but there is no such prohibition about sections of
different types. In theory, if you wish all your memory integrated, you could define all three
sections with the same address parameters. However, this raises the question about the
compiling and allocation words ALLOT, , etc. On an integrated-memory system, they must not
behave separately, and initialization of IData becomes complicated.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 4

In practice, it is far more convenient to segregate these memory spaces. However, it is not
uncommon to see a test environment for a ROM-based target to define a CData space in a chunk
of UData to provide for test definitions in RAM.

Special issues arise in the case of “Harvard architecture” processors (which enforce run-time
segregation of code and data spaces). They may, for example, allow parallel address spaces (e.g.,
0-64K code space, 0-64K data space). Some even have different cell sizes for code and data
space. Since a standard application is not permitted to read or write actual code, differing cell
sizes can be reasonably well concealed within the cross compiler (or visible only in platform-
dependent code). However, the potential for parallel address spaces has required the addition of
the words @C, C@C, and CMOVEC for explicitly accessing code space. These words are useful for
managing CData at compile time, and are necessary for reading code space in a Harvard target at
run time in the target program.

On Harvard architecture processors that rigorously enforce the code/data segregation, it may be
necessary to define separate CData sections for code and constant data. In most compilers the
user controls the disposition of multiple CData sections, so they may be installed appropriately in
the target.

A.x.3.2.1 Types of memory

Note that the table listing the locations of standard data objects omits CONSTANTs and
2CONSTANTs. The reason for this is that since their data space may not be referenced nor their
values changed, there is no need to specify where they reside. They may reside in CData or
IData, or they may cause literal values to be compiled (in which case they don’t exist as entities
in the target at all).

The host’s image of IData and CData may be read and written by the host system, but UData may
not. We are aware that many cross-compilers provide interactive access to a target under test,
and under this circumstance UData may be read and written. However, although this is a
convenient and desirable feature, this standard does not require it, and standard programs may
not assume such a capability.

The availability of the words that select memory types provides total flexibility for user-defined
defining words to specify where their data space(s) may go. For example, here is an example of
an array that keeps its parameters in IData and its payload in UData:

: BIGARRAY (n --) \ Defines an array of n bytes in UData
 CREATE DUP , \ Save size
 UDATA HERE IDATA , \ Save payload address
 UDATA ALLOT \ Reserve n bytes in UData
 DOES> (n – addr) \ Takes an index and returns nth addr
 2@ ROT MIN + ; \ Return addr, clipped to size
This type of strategy is preferred when the payload is large, because placing it in IData would
enlarge the initialization table unnecessarily.

Note that HERE and ALLOT are working in the current section of the current section type. It is
neither necessary nor appropriate to specify section type in the DOES> portion, because when this
is executed the target program is dealing with actual addresses, mapped to the right places.
Section manipulation is a compile-time issue.

Note that the DOES> is followed by target code, which may not be executed on the host. If you
wish INTERPRETER access to the IData space of BIGARRAY on the host, you may get it with
the phrase:

' BIGARRAY >BODY

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 5

It is possible to place data structures in CData, but only if they are regarded as constant (read-
only) data by the target program at run-time. That is, you may say:

CDATA CREATE FOO 10000 , IDATA
…and later say FOO @ in the target program, but FOO’s data space is read-only to the target.

A.x.3.2.2 Memory sections

Since it is highly likely that two different platforms will have different physical memory
configurations, it is reasonable to ask whether this is something worth standardizing. We believe
that, even though it may be necessary to re-map the specific addresses in one or more memory
sections when porting a program to a new platform, it is a valuable contribution to portability to
standardize the specification mechanism and syntax. In most cases it should be possible to
accommodate a different memory map by simply adjusting the specific address arguments in the
section definitions, with no other changes being necessary.

In many, perhaps most, instances there will be only three defined sections, one of each type.
Multiple sections of the same type may be used to, for example, place frequently-accessed data in
on-chip RAM or to manage a discontinuous target memory map.

A.x.3.2.2.1 Defining Sections

As an example, consider the following configuration of a program that runs from PROM on a
platform with RAM at addresses 800-BFFH and PROM from 8000-FFFFH. It’s configured with
the following sections:

INTERPRETER HEX
0800 08FF IDATA SECTION IRAM \ Initialized data
0900 0BFF UDATA SECTION URAM \ Uninitialized data
8000 FFFF CDATA SECTION PROGRAM \ Program in external ROM

Note that you must be in INTERPRETER scope in order to define your sections.

CData is commonly used for storing executable code, a program image, and the initialization
information for IData. However, just as elsewhere ANS Forth allows access only to application-
defined data space, users of cross-compilers are similarly allowed access only to data objects
defined by the application in CData.

Since both CData and IData are initialized at compile-time, the decision where to place an
initialized data object should be primarily based on whether the program needs to write to the
object, since CData is read-only. Writable data objects that do not require initialization should be
placed in UData, since doing so saves space that may otherwise be required for initialization.

Multiple sections of the same type are helpful when your memory map isn’t contiguous, or when
you want to be able to manage internal (on-board) RAM specially, for example, by putting your
stacks and frequently-accessed system variables there. Except in situations where there are
multiple sections of each type, the section names are rarely used. The section type specifiers
(IDATA, etc.) are primarily used to control where the data space of new data objects being
defined will be.

A.x.3.2.2.2 Memory Access

The memory access words that are executable while interpreting in TARGET scope must be
defined in INTERPRETING scope.

Some targets allow access to CData at run-time, and cross-compilers supporting such targets may
provide storing equivalents of C@C and @C, but such access is an environmental dependency.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 6

a.x.3.3.3.2 Contiguous regions

The reason that contiguity of space allocated by BUFFER: and RESERVE is not guaranteed is to
enable cross compilers to allocate UData in a top-down fashion if they so desire.

Note the restriction that a contiguous region is “terminated by defining the next object in that
section type.” In the case of CData, this may include executable definitions as well as data
objects.

A.x.3.4 Effects of scopes on data object defining words
Some special issues arise when creating custom data objects in a cross-compiled environment:
defining words are executed on the host, to create new definitions that can be executed on the
target. Therefore, you must be in the INTERPRETER scope (see x.3.1.2 INTERPRETER Scope)
when you create a custom defining word, and you must be aware of what data space you are
accessing in the new data object.

Consider this example:

INTERPRETER
\ PRINTS defines words that display their values.

: PRINTS (n --)
 CREATE , \ New definition with value n.
 DOES> (--) \ Execution behavior.
 @ . ; \ Fetch value and display it.

TARGET

1 PRINTS ONE
2 PRINTS TWO

ONE and TWO are target definitions, instances constructed by the defining word PRINTS. Each
instance has its own value, but all objects defined by PRINTS share the run-time behavior (@ and
.) associated with PRINTS.

You must specify INTERPRETER before you make the new defining word, and then return to
TARGET to use this word to add definitions to the target. The INTERPRETER version of DOES>
allows you to reference TARGET words in the execution behavior of the word, since that will be
executed only on the target.

When CREATE (as well as the other memory allocation words listed in Section 3.3) is executed to
create the new data object, it uses the current section type. We recommend adopting the policy
that the default is IData. The defining words that explicitly use UData (VARIABLE, BUFFER:,
etc.) do not affect the current section type. If you wish to force a different section type, you may
do so by invoking one of the selector words (CDATA, IDATA, or UDATA) inside the defining
portion or before the defining word is used. If you do this, however, you should assume
responsibility for re-asserting the default section.

You can control where individual instances of PRINTS definitions go, like this:

CDATA
1 PRINTS ONE

IDATA
2 PRINTS TWO

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 7

In this case, the data space for ONE is in code space, but the data space for TWO is in initialized
data space. (Not all processors support data objects in code spaces, so TWO is portable and ONE is
not.)

Alternatively, assuming your processor permits it and you are willing to assume the appropriate
dependencies, you could define PRINTS to explicitly assert CData:

: PRINTS (n --)
 CDATA \ Select code section.
 CREATE , \ New definition with value n.
 IDATA \ Restore default iData section.
 DOES> (--) \ Target execution behavior.
 @ . ; \ Fetch value and display it.

In this case, both the CREATE and the , (comma) will use CData.

A.x.3.5 Ambiguous conditions

A.x.4 Additional documentation requirements

A.x.4.1 System documentation

A.x.4.1.1 Implementation-defined options

Separate documentation requirements are given for host and target. In general, specification of
features such as cell and character size, arithmetic and number representation, alignment
requirements, etc., are of more interest with respect to the target than the host, because it is
assumed that it is the target you are programming. Cell sizes of host and target may well differ;
it is common, for example, to use a 32-bit Forth to support a cross-compiler for 16-bit target
implementations. This will present a challenge for the cross-compiler implementor, but should
be transparent to a program being written to run on the 16-bit target.

A.x.4.1.2 Ambiguous conditions

A.x.4.1.3 Other system documentation

A.x.4.2 Program documentation

A.x.5 Compliance and labeling

A.x.5.1 ANS Forth cross-compilers
The intent of this section is to make it clear that a “standard cross-compiler” is a programming
environment comprised of the host and target together. It is expected that the primary
responsibility for compiling falls on the host; therefore, the host is required to provide all the
compiler support words. The target is not required to provide a compiler or searchable dictionary
(though it may do so), but it is required to support all other CORE words.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 8

A.x.5.2 ANS Forth programs

A.x.6 Glossary

A.x.6.1 Cross-compiler words
A.x.6.1.1250 DOES> “does” CROSS

This version of DOES> must be defined in COMPILER scope, for use in
INTERPRETER definitions of target data objects. The COMPILER version of DOES>
must make the necessary adjustments to search order or other implementation
strategy to ensure that the run-time portion of the definition is executable on the
target.

x.6.1.nnnn SECTION CROSS

Recommended usage is to specify the section type immediately before SECTION. For
example:

0800 08FF IDATA SECTION IRAM \ Initialized data
defines a region of IData named IRAM whose address range is 0800-08FFH.

Note that use of a section name only changes the current section of name’s type, it
doesn’t change the current section type. That is only done by the type name (IDATA,
etc.). If there is only one defined section of each section type, the section names are
never actually required.

x.6.1.nnnn VARIABLES CROSS

Usage: <section-type> VARIABLES

Some cross-compilers have traditionally placed VARIABLEs in uninitialized RAM,
whereas others have placed them in initialized data space, allowing for possible
initialization. Addition of this configuration option allows programs to select an
appropriate behavior.

Programs wishing to minimize the size of the target image may prefer to use UData
for VARIABLEs, and use VALUE or a form such as:

CREATE <name> <n> ,

for read/write data objects that need initial values.

A.x.6.2 Cross-compiler extension words
The words added here have been found to be extremely useful in cross-compiling environments.

A.x.6.2.nnnn @C “fetch-c” CROSS EXT

This word is intended to provide access to code space in Harvard architecture targets.
In such targets, the addresses for CData and IData or UData may overlap, and code
space is not readable without special action. In non-Harvard targets, @C is equivalent
to @ in target programs.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 9

A.x.6.2.nnnn BUFFER: CROSS EXT

This word is taken from IEEE 1275, Open Firmware.

A.x.6.2.nnnn C@C “c-fetch-c” CROSS EXT

This word is intended to provide access to code space in Harvard architecture targets.
In such targets, the addresses for CData and IData or UData may overlap, and code
space is not readable without special action. In non-Harvard targets, C@C is
equivalent to C@ in target programs.

x.6.2.nnnn CMOVEC “c-move-c” CROSS EXT

This word is intended to provide access to code space in Harvard architecture targets.
In such targets, the addresses for CData and IData or UData may overlap, and code
space is not readable without special action. In non-Harvard targets, CMOVEC is
equivalent to CMOVE in target programs.

x.6.2.nnnn CVARIABLE CROSS EXT

This word is especially useful in small embedded systems, as it allows the definition
of single-character data objects, thus saving RAM.

