
! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 1

x. The optional Cross-compiler word set

x.1 Introduction

The purpose of this optional wordset is to facilitate writing programs that may be compiled to run
on targets other than the system performing the compilation. See “cross-compiler”, Section x.2.1
Definitions of Terms.

It is acknowledged that most cross-compiled programs have inherent dependencies upon hardware
configuration and other issues that render true program portability impossible to achieve in this
context. The intent of this wordset is to facilitate the porting of programs from one target to
another by standardizing aspects of the relationship between host and target, as well as means of
describing a target configuration.

x.2 Additional terms and notation

x.2.1 Definitions of terms

active section: the current section of the current section type.

allocation pointer: The address of the next available location in each defined memory section.

CData (constant data space): Data space that is read-only during execution of a target program.
CData may also contain executable code.

compiling words: Words that modify a Forth dictionary by emplacing code or data there or
performing a static memory allocation.

cross-compiler: A compiler whose target is assumed to be a different computer from the one on
which the compiler is operating.

host: The computer on which a cross-compiler is run. It may or may not be or resemble the
computer on which the compiled program will run.

IData (initialized data space): Space in RAM that is initialized by implementation-dependent
means before a target program begins to run.

ROM: “Read-only-memory,” memory which may exist in the target and which cannot be changed
by a running program. ROM may be used to contain code space and start-up initialization data.
This term also includes memory that is writable only by special procedures, such as flash memory
or EEPROM.

RAM: “Random-access memory,” memory in the target which may be read or written by a
running program. Data space resides in RAM.

scope: The logical space in which a word is visible or can be executed.

searching words: Words that search a Forth dictionary.

section: A contiguous region of memory designated for particular treatment (according to its type,
CData, IData, or UData) by the cross compiler.

target: the computer for which a cross-compiled program is being prepared. It may or may not
resemble the computer on which the compiler executes.

target address: an address in target address space.

target dictionary: the image of the target program constructed by the host for execution on the
target. It may include both executable code and data objects defined in initialized data space. The
physical location and structure of the target dictionary is implementation-defined.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 2

UData (uninitialized data space): Space in RAM that is not initialized to any specific value
when a target program begins to run.

x.3 Additional usage requirements

x.3.1 Scopes

Scopes are used to distinguish specialized cross-compiler words from their counterparts in an
underlying Forth system supporting the cross-compiler, or from target behaviors that are
inappropriate in the host environment. Scopes may be (but are not required to be) implemented
using the Search Order wordset; if this is the case, a scope may consist of a search order consisting
of multiple wordlists.

A scope is selected by use of one of the following “scope selector” words: HOST,
INTERPRETER, COMPILER, TARGET. Unless otherwise specified herein, a scope remains in
effect until explicitly changed. All scope selector words must be executable in all scopes. Scope
selector words are host-executable words and may not be referenced in target colon definitions.

An ambiguous condition exists if a program changes scope within a colon definition.

x.3.1.1 HOST scope

The HOST scope provides access to the underlying Forth system upon which the cross-compiler is
built. The HOST scope shall include, at least, the CORE wordset. It may include additional
wordsets and implementation-defined extensions for the purpose of cross-compiler support.

Words in the HOST scope are executable only on the host system in HOST or INTERPRETER
scopes; HOST defining words construct additional host definitions and data objects; and HOST
memory allocation words affect the host dictionary only.

x.3.1.2 INTERPRETER scope

The INTERPRETER scope enables the definition of words that may be executed on the host in
TARGET scope to construct and manipulate the target dictionary. Generally speaking, this
comprises cross-compiler versions of all defining words (e.g., : ; CREATE VARIABLE) and
memory allocation and access words (e.g., @, !, ALLOT, ,). Words in this scope behave
analogously to their CORE counterparts except that they construct target definitions, allocate
target memory, and access the target’s initialized data space.

Cross-compiler-specific defining words such as CVARIABLE and BUFFER: are defined in
INTERPRETER scope, as are any application-specific defining words or memory-allocation
words. The portion of a defining word following DOES> is considered a target definition, and is
subject to all specifications in this document that apply to target definitions.

Words defined in the INTERPRETER scope may be executed in INTERPRETER or TARGET
scopes. INTERPRETER words may be referenced in other INTERPRETER definitions, but may
not be referenced in TARGET colon definitions. They are not available in HOST or COMPILER
scopes.

An ambiguous condition exists if a word executed on the host attempts to access the target’s
uninitialized data space.

x.3.1.3 COMPILER scope

The COMPILER scope provides words that may be executed within a target colon definition
(between the : or :NONAME and terminating ;) to modify the target dictionary being
constructed. Generally speaking, this comprises all flow-of-control structure words (e.g., DO, IF,
etc.), LITERAL, and other words that are “immediate” in normal Forth usage.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 3

Words defined in COMPILER scope will be executed automatically by the host when encountered
in a target definition. The word IMMEDIATE (6.1.1710) may not be used with COMPILER words.

An ambiguous condition exists if a COMPILER word is referenced other than within a target colon
definition while compiling.

x.3.1.4 TARGET scope

The TARGET scope contains all definitions that will be executable on the target system, including
both colon definitions and data objects. An ambiguous condition results from an attempt to
execute a TARGET definition on the host computer.

The following defining words have special behaviors when encountered in TARGET scope:

2VARIABLE, :, :NONAME, CREATE, CVARIABLE, VALUE, VARIABLE

Except for those words with additional requirements itemized in the glossaries below, the
difference is that they create target definitions; in all other respects they behave analogously to
their non-cross-compiling counterparts.

x.3.1.5 Use of IMMEDIATE

Since the primary function of IMMEDIATE (6.1.1710) is superceded in the cross compiler by the
COMPILER scope, it is an ambiguous condition to use IMMEDIATE in INTERPRETER,
COMPILER, or TARGET scopes.

x.3.2 Data space management

Target memory space can be divided into multiple sections of three types: CData, IData, and
UData. These are discussed below.

x.3.2.1 Types of memory

There are three kinds of target memory:

CData contains data structures that are specified at compile time, and are read-only during
execution of a target program. CData may reside in PROM or other read-only media. CData may
also contain executable code, a program image, and/or the initialization tables for IData.

IData is initialized data space. IData may be allocated, read and written during the compilation
process, and is also read/write during execution of the target program. The host maintains an
image of Idat, built during compilation, which will be recorded with the target program in an
implementation-dependent fashion. It is the responsibility of the target system to construct and
initialize this space at run-time prior to launching any user programs.

UData is target data space whose initial content is undetermined at run-time. UData may be
allocated, but may not be read or written during compilation. The target system is not required to
perform any specific initialization of UData, and a program may not make any assumptions
regarding its contents before storing into it. An ambiguous condition exists if the target program
reads UData before writing to it.

Data objects reside in CData, IData or UData. The following standard data object defining words
are specified as to which kind of space they reside in:

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 4

Table x.1: Data space assignments

Object Data location
2VARIABLE UData or IData, controlled by VARIABLES switch
CVARIABLE UData or IData, controlled by VARIABLES switch
VARIABLE UData or IData, controlled by VARIABLES switch
VALUE IData

The default location for data in a user-defined defining word is IData, however the definition may
explicitly select the memory space type in which its data space is allocated.

The words CDATA, IDATA, and UDATA select a current memory space type. The specific bounds
of this space depend upon the currently selected section of the current memory type.
INTERPRETER words that manage data space always act on the active section.

x.3.2.2 Memory sections

A program may define one or more sections of each section type, specifying the address range for
each. The current section type controls data defining words, memory allocation, and memory
accesses of various types, both during compilation and during interactive testing.

A section definition includes its starting and ending addresses, its type, and an allocation pointer.
The allocation pointer for each section gives the address of the next available location in that
section. When a section is initially defined, its allocation pointer points to its starting address.

The current state of all section definitions, including the current section of each section type and
the current section type, but not the contents of the sections, is called the “section context.” It may
be saved and restored by SAVE-SECTIONS and RESTORE-SECTIONS.

x.3.2.2.1 Defining sections

At least one instance of each section type must be defined, with upper and lower target address
boundaries, before it is used. Address ranges for instances of the same section type may not
overlap. The syntax for defining a memory section is:

<low address> <high address> [<type>] SECTION <name>

This defines a section of type type named name with the address range specified.

Sections must be defined in INTERPRETER scope.

An instance becomes the current section of its type when its name is invoked. The compiler will
maintain a set of allocation pointers for each section of each type. Only one section of each type is
current at any time.

This standard does not attempt to guarantee the availability of memory at any specified target
address range; the actual addresses available are intrinsically dependent upon the target hardware.
An ambiguous condition exists if a program specifies a section in memory space incompatible with
the target hardware.

If the target system will place IData initialization tables and executable code (or its program
image) in CData, the programmer is responsible for configuring sufficient CData space to contain
these things in addition to explicitly defined CData objects.

x.3.2.2.2 Memory access

The following memory access words have special behaviors when executed in TARGET scope or
in an INTERPRETER definition:

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 5

! , @ BLANK C! C, C@ CMOVE CMOVE> CMOVEC ERASE FILL MOVE

Except for those words with additional requirements itemized in the glossaries below, the
difference is that these words accept addresses in target address space. An ambiguous condition
exists if that address does not fall within a defined CData or IData section when these words are
executed by the host.

The following memory allocation and address management words have special behaviors when
executed in TARGET scope or in an INTERPRETER definition:

, (comma) ALIGN ALIGNED ALLOT C, HERE UNUSED

Except for those words with additional requirements itemized in the glossaries below, the
difference is that these words accept addresses in target address space. An ambiguous condition
exists if that address does not fall within a defined CData or IData section when these words are
executed by the host.

x.3.2.6 Environmental queries

A Cross-compiler supports two environments, the host and target. Table x.2 identifies which of
the environmental query strings defined in 3.2.6 Environmental queries applies to the host and
which to the target.

Table x.2 – Environmental Query Strings

String Applies to:
/COUNTED-STRING target
/HOLD target
/PAD target
ADDRESS-UNIT-BITS target
CORE true if complete core word set present in the

programming environment presented by the host
and target as described in section x.5.1.

CORE-EXT true if core extensions word set present in the
programming environment presented by the host
and target as described in section x.5.1.

CROSS true if complete cross-compiler word set present.
CROSS-EXT true if complete cross-compiler extension word

set present.
FLOORED target
MAX-CHAR target
MAX-D target
MAX-N target
MAX-U target
MAX-UD target
RETURN-STACK-CELLS target
STACK-CELLS target

x.3.3.3.2 Contiguous regions

A cross compiler guarantees that a region of data space allocated using ALLOT, , (comma), C, (c-
comma), and ALIGN shall be contiguous with the last region allocated with one of the above
words within the same section of the same section type. The data-space pointer HERE always
identifies the beginning of the next data-space region in the active section to be allocated. As
successive allocations are made, the data-space pointer increases. A program may perform address
arithmetic within contiguously allocated regions. The last region of data space allocated in the

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 6

current section using the above operators may be released by allocating a corresponding
negatively-sized region using ALLOT.

CREATE establishes the beginning of a contiguous region of data space in the active section,
whose starting address is returned by the CREATEd definition. This region is terminated by
defining the next object in that section type.

The contiguity of regions allocated by BUFFER: and RESERVE is unspecified.

x.3.4 Effects of scopes on data object defining words

Defining words other than : (colon) are used to build data structures with characteristic behaviors.

Normally, the primary role of a cross-compiler is building definitions and data structures for the
target system; therefore, the dominant use of defining words is in the TARGET scope while
interpreting. A program may also build data objects in HOST that may be used in all scopes except
TARGET; such objects might, for example, be used to control the compiling process.

Target data objects fall into three classes:

n CData or IData objects in initialized data memory—e.g., words defined by
CREATE, etc., including most user-defined words made with CREATE … DOES>.

n UData objects in uninitialized data memory—e.g., words defined by the use of
VARIABLE, BUFFER:, etc.

n Constants—words defined by VALUE, CONSTANT or 2CONSTANT.

Unlike target colon definitions, target data objects defined with standard defining words may be
invoked in TARGET scope while interpreting. Words defined by CREATE, VARIABLE,
2VARIABLE, CVARIABLE, and BUFFER: will return the address of their target data space. A
target data object defined with custom behaviors using CREATE … DOES> may not be invoked
while interpreting, because its behavior is not executable on the host. To obtain the address of the
target data space of such an object, you may use the form:

' <name> >BODY.

Target data objects defined by VALUE, CONSTANT, or 2CONSTANT return their values when
executed in TARGET scope. Target VALUEs may be altered interpretively in TARGET scope using
TO. CONSTANTs and 2CONSTANTs may not be altered at any time once they have been defined.

IData objects may be given compiled, initial values with , (comma) and C, (c-comma), and you
may also use @ and ! (etc.) with them interpretively on the host. However, there is no way to
initialize UData objects at compile time, and an ambiguous condition results from any attempt to
access UData objects from the host.

x.3.5 Ambiguous conditions

– a word executed on the host attempts to access the target’s uninitialized data space.

– the current scope is changed within a colon definition.

– a COMPILER word is referenced other than within a target colon definition while in
compiling state.

– the word IMMEDIATE (6.1.1710) is used in COMPILER, INTERPRETER, or
TARGET scopes.

– an attempt to execute a TARGET definition on the host computer.

– a program specifies a section in memory space incompatible with the target
hardware.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 7

– addr passed to ORG is not within the active section.

– a target program attempts to write to CData.

– a program attempts to define a VARIABLE, CVARIABLE, or 2VARIABLE without
previously executing VARIABLES.

– A target program reads a UData location before it has been written.

– EQU is executed in HOST scope.

x.4 Additional documentation requirements

x.4.1 System documentation

x.4.1.1 Implementation-defined options

x.4.1.1.1 Host options

The implementation-defined items in the following list represent host characteristics and choices
left to the discretion of the implementor, provided that the requirements of this Standard are met.
A system shall document the values for, or behaviors of, each item.

– conditions under which control characters match a space delimiter (3.4.1.1 Delimiters);
– input line terminator (3.2.4.1 User input device);
– maximum size of a parsed string (3.4.1 Parsing);
– maximum size of a definition name, in characters (3.3.1.2 Definition names);
– maximum string length for 6.1.1345 ENVIRONMENT?, in characters;
– methods of dictionary compilation (3.3 The Forth dictionary);
– size of buffer at 6.1.2450 WORD (3.3.3.6 Other transient regions);
– system case-sensitivity characteristics (3.4.2 Finding definition names);
– system prompt (3.4 The Forth text interpreter, 6.1.2050 QUIT);
– values of 6.1.2250 STATE when true;
– whether the current definition can be found after 6.1.1250 DOES> (6.1.0450 :).

x.4.1.1.2 Target options

The implementation-defined items in the following list represent target characteristics and choices
left to the discretion of the implementor, provided that the requirements of this Standard are met.
A system shall document the values for, or behaviors of, each item.

– aligned address requirements (3.1.3.3 Addresses);
– behavior of 6.1.1320 EMIT for non-graphic characters;
– character editing of 6.1.0695 ACCEPT and 6.2.1390 EXPECT;
– character set (3.1.2 Character types, 6.1.1320 EMIT, 6.1.1750 KEY);
– character-aligned address requirements (3.1.3.3 Addresses);
– character-set-extensions matching characteristics (3.4.2 Finding definition names);
– format of the control-flow stack (3.2.3.2 Control-flow stack);
– conversion of digits larger than decimal thirty-five (3.2.1.2 Digit conversion);
– display after input terminates in 6.1.0695 ACCEPT and 6.2.1390 EXPECT;
– exception abort sequence (as in 6.1.0680 ABORT");
– input line terminator (3.2.4.1 User input device);
– maximum size of a counted string, in characters (3.1.3.4 Counted strings, 6.1.2450 WORD);
– maximum size of a parsed string (3.4.1 Parsing);
– method of selecting 3.2.4.1 User input device;
– method of selecting 3.2.4.2 User output device;

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 8

– number of bits in one address unit (3.1.3.3 Addresses);
– number representation and arithmetic (3.2.1.1 Internal number representation);
– ranges for n, +n, u, d, +d, and ud (3.1.3 Single-cell types, 3.1.4 Cell-pair types);
– read-only data-space regions (3.3.3 Data space);
– size of one cell in address units (3.1.3 Single-cell types);
– size of one character in address units (3.1.2 Character types);
– size of the keyboard terminal input buffer (3.3.3.5 Input buffers);
– size of the pictured numeric output string buffer (3.3.3.6 Other transient regions);
– size of the scratch area whose address is returned by 6.2.2000 PAD (3.3.3.6 Other transient

regions);
– type of division rounding (3.2.2.1 Integer division, 6.1.0100 */, 6.1.0110 */MOD, 6.1.0230

/, 6.1.0240 /MOD, 6.1.1890 MOD);
– values of 6.1.2250 STATE when true;
– values returned after arithmetic overflow (3.2.2.2 Other integer operations);
– whether the current definition can be found after 6.1.1250 DOES> (6.1.0450 :).

x.4.1.2 Ambiguous conditions

– system response to each of the conditions listed in Section x.3.5.

x.4.1.3 Other system documentation

A Cross-compiler shall provide the following information:

– list of non-standard target words using 6.2.2000 PAD (3.3.3.6 Other transient regions);

– target’s terminal facilities available;

– target program data space available, in address units;

– target return stack space available, in cells;

– target stack space available, in cells;

– target CData space required, in address units.

x.4.2 Program documentation

– memory requirements for CData, IData, and UData.

x.5 Compliance and labeling

x.5.1 ANS Forth cross-compilers

A system may be described as “An ANS Forth Cross-Compiler” when the programming
environment presented by the host and target in combination complies with all the system
requirements in 3. Usage requirements and 4. System documentation not superceded by
requirements in this section X, and all additional requirements in this section X. The following
sections document specific requirements for the host and target considered individually.

x.5.1.1 Host system requirements

The programming environment presented by the host system shall include at a minimum all
compiling, defining, and searching words defined in section x.6.1 Cross compiler words.

The host must also provide in its HOST scope all CORE words with their standard meanings.
Those CORE words not given extended meanings in section x.6.1 Cross-compiler words shall
be available for use in INTERPRETER scope.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 9

x.5.1.2 Target system requirements

The target system may, but is not required to, provide the following compiling, defining, and
searching words:

' (, : ; >IN ALLOT ALIGN C, CHAR CONSTANT
CREATE FIND ENVIRONMENT? EVALUATE IMMEDIATE QUIT
SOURCE STATE VARIABLE WORD []
HOST INTERPRETER COMPILER TARGET
CDATA IDATA UDATA

x.5.1.3 Extension labeling requirements

The phrase “Providing name(s) from the Cross-compiler Extensions word set” shall be appended
to the label of any Cross Compiler that provides portions of the Cross-compiler Extensions word
set.

The phrase “Providing the Cross-compiler Extensions word set” shall be appended to the label of
any Cross Compiler that provides all of the Cross-compiler and Cross-compiler Extensions word
sets.

The target system is not required to provide the following Cross-compiler Extensions words:

2VARIABLE BUFFER: CVARIABLE EQU ORG VALUE

Additional optional words and wordsets may be provided, however the Cross-compiler must
specify what features in any such additions are supported by the host, by the target, or both.

x.5.2 ANS Forth programs

The phrase “Requiring the Cross-compiler word set” shall be appended to the label of Standard
Programs that require the system to provide the Cross-compiler word set.

The phrase “Requiring name(s) from the Cross-compiler Extensions word set” shall be appended
to the label of Standard Programs that require the system to provide portions of the Cross-compiler
Extensions word set.

The phrase “Requiring the Cross-compiler Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide all of the Cross-compiler and Cross-compiler
Extensions word sets.

x.6 Glossary

x.6.1 Cross-compiler words

x.6.1.0010 ! “store” CROSS

(x a-addr —)

Extend the definition of ! when executed in TARGET scope or in an INTERPRETER
definition to store into the host’s image of the memory section (CData or IData only)
containing a-addr. An ambiguous condition exists if addr doesn’t reside in a defined
CData or IData section.

x.6.1.0070 ' “tick” CROSS

(“<spaces>name” — xt)

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 10

Extend the definition of ' when executed in TARGET scope or in an INTERPRETER
definition to search only TARGET definitions and return a target-executable xt.

x.6.1.0150 , “comma” CROSS

(x —)

Extend the definition of , when executed in TARGET scope or in an INTERPRETER
definition to compile x at the next available location in the active section (CData or
IData only).

x.6.1.0650 @ “fetch” CROSS

(a-addr — x)

Extend the definition of @ when executed in TARGET scope or in an INTERPRETER
definition to fetch from the host’s image of the memory section (CData or IData)
containing a-addr.

x.6.1.0705 ALIGN CROSS

(—)

Extend the definition of ALIGN when executed in TARGET scope or in an
INTERPRETER definition to force the space allocation pointer for the active section
to be aligned according to requirements of the target system.

See: 3.3.3.1 Address alignment.

x.6.1.0706 ALIGNED CROSS

(addr — a-addr)

Extend the definition of ALIGN when executed in TARGET scope or in an
INTERPRETER definition to align addr according to requirements of the target
system.

See: 3.3.3.1 Address alignment.

x.6.1.0710 ALLOT CROSS

(n —)

Extend the definition of ALLOT when executed in TARGET scope or in an
INTERPRETER definition to allocate n bytes at the next available location in the
active section.

x.6.1.0850 C! “c-store” CROSS

(char c-addr —)

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 11

Extend the definition of C! when executed in TARGET scope or in an INTERPRETER
definition to store into the host’s image of the section (CData or IData only) containing
c-addr. An ambiguous condition exists if c-addr doesn’t reside in a defined CData or
IData section.

x.6.1.0860 C, “c-comma” CROSS

(char —)

Extend the definition of C, when executed in TARGET scope or in an INTERPRETER
definition to compile char at next available location in the active section (CData or
IData only).

x.6.1.0870 C@ “c-fetch” CROSS

(c-addr – char)

Extend the definition of C@ when executed in TARGET scope or in an INTERPRETER
definition to fetch a character from the host’s image of the memory section (CData or
IData only) containing c-addr. An ambiguous condition exists if c-addr doesn’t reside
in a defined CData or IData section.

x.6.1.nnnn CDATA “c-data” CROSS

(—)

Select CData as the current section type. This word may be executed in TARGET
scope, or used in INTERPRETER definitions.

x.6.1.0880 CELL+ “cell-plus” CROSS

(a-addr1 — a-addr2)

Extend the definition of CELL+ when executed in TARGET scope or in an
INTERPRETER definition to apply the size of a target cell.

See: 3.3.3.1 Address alignment.

x.6.1.0890 CELLS CROSS

(n1 — n2)

Extend the definition of CELLS when executed in TARGET scope or in an
INTERPRETER definition to apply the size a target cells.

x.6.1.0897 CHAR+ “char-plus” CROSS

(c-addr1 — c-addr2)

Extend the definition of CHAR+ when executed in TARGET scope or in an
INTERPRETER definition to apply the size of a target character.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 12

See: 3.3.3.1 Address alignment.

x.6.1.0898 CHARS “chars” CROSS

(n1 — n2)

Extend the definition of CHARS when executed in TARGET scope or in an
INTERPRETER definition to apply the size of a target character.

x.6.1.nnnn COMPILER CROSS

(—)

Select the scope in which words are defined that will be executed when encountered
within TARGET colon definitions at compile time, to modify the target dictionary entry
being constructed.

See: x.3.1.3 COMPILER scope.

x.6.1.1000 CREATE CROSS

(“<spaces>name” —)

Extend the definition of CREATE when executed in TARGET scope to define a named
reference to the next available location in the active section. Does not allocate any
data space.

When encountered while compiling a word being defined in INTERPRETER scope, it
compiles a reference to the version of CREATE described above. This is the
appropriate usage for creating new target defining words, used in combination with
x.6.1.1250 DOES>.

x.6.1.1250 DOES> “does” CROSS

(—)

When encountered while compiling a word being defined in INTERPRETER scope,
extend the definition of DOES> to cause the compiler to use only TARGET and
COMPILER words until the end of the definition in which DOES> is found.

x.6.1.1540 FILL CROSS

(c-addr u char —)

Extend the definition of FILL when executed in TARGET scope or in an
INTERPRETER definition to write to the host’s image of CData or IData.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 13

x.6.1.1650 HERE CROSS

(— addr)

Extend the definition of HERE when executed in TARGET scope or in an
INTERPRETER definition to return the address of the next available location in the
active section.

x.6.1.nnnn HOST CROSS

(—)

Select the scope that provides access to the words in the underlying Forth system upon
which the cross compiler is built.

See: x.3.1.1 HOST scope.

x.6.1.nnnn IDATA “i-data” CROSS

(—)

Select IData as the current section type. This word may be executed in TARGET
scope, or used in INTERPRETER definitions.

x.6.1.nnnn INTERPRETER CROSS

(—)

Select the scope in which words used to construct and manage target definitions and
data objects are defined.

See: x.3.1.2 INTERPRETER scope.

x.6.1.1900 MOVE CROSS

(addr1 addr2 u —)

Extend the definition of MOVE when executed in TARGET scope or in an
INTERPRETER definition to write to the host’s image of IData or CData. An
ambiguous condition exists if addr1 or addr2 doesn’t reside in a defined IData or
CData section.

See: x.6.2.0910 CMOVE, x.6.2.0920 CMOVE>.

x.6.1.2033 POSTPONE CROSS

Interpretation: Interpretation semantics for this word are undefined.

Compilation: (“<spaces>name” —)

Extend the semantics of 6.1.2033 POSTPONE when encountered in a COMPILER
definition to search for name only among COMPILER and TARGET definitions, and
append the compilation behavior of name to the current COMPILER definition.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 14

An ambiguous condition exists if POSTPONE is used in a TARGET definition.

See: 3.4.1 Parsing.

x.6.1.nnnn RESTORE-SECTIONS CROSS

(n*x n —)

Restore the entire section context previously saved by SAVE-SECTIONS.

x.6.1.nnnn SAVE-SECTIONS CROSS

(— n*x n)

Save the entire current section context in an implementation-dependent form.

x.6.1.nnnn SECTION CROSS

(addr1 addr2 “<spaces>name” —)

Skip leading space delimiters. Parse name delimited by a space. Create a definition
name in the host only, with the execution semantics defined below. The definition of
name identifies a target memory section of the section type that is current when
SECTION is executed, whose memory range is addr1 to addr2 (inclusive).

SECTION shall be executed only in INTERPRETER scope. Defined sections may be
referenced in INTERPRETER, COMPILER, and TARGET scopes.

Immediately following use of SECTION, name is the current section of that section
type, and addr1 is the initial value of the section’s allocation pointer.

name Execution: (—)

Make name the current section of name’s section type.

x.6.1.nnnn TARGET CROSS

(—)

Select the scope in which target-executable definitions and data objects are defined.

See: x.3.1.1 TARGET scope.

x.6.1.nnnn UDATA “u-data” CROSS

(—)

Select UData as the current section type. This word may be executed in TARGET
scope, or used in INTERPRETER definitions.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 15

x.6.1.2410 VARIABLE CROSS

(“<spaces>name” —)

Extend the definition of VARIABLE executed in TARGET scope or in an
INTERPRETER definition to create a definition for name in the current section of the
section type specified by x.6.1.nnnn VARIABLES.

name Execution: (— a-addr)

a-addr is the address of the cell reserved by VARIABLE when it defined name. A
program is responsible for initializing the contents.

x.6.1.nnnn VARIABLES CROSS

Configures the cross-compiler to assign data space for VARIABLEs (as well as
CVARIABLEs and 2VARIABLEs, if they exist) in the current section of the section
type (either IData or UData) that is current when VARIABLES is executed.

An ambiguous condition exists if a program attempts to define a VARIABLE,
CVARIABLE, or 2VARIABLE without previously executing VARIABLES.

x.6.1.2510 ['] “bracket-tick” CROSS

Compilation: (“<spaces>name” —)

Extend the compilation semantics of ['] when encountered in a TARGET definition
to search only TARGET definitions and compile a reference to a target-executable xt.

x.6.2 Cross-compiler extension words

x.6.2.nnnn @C “fetch-c” CROSS EXT

(a-addr — x)

x is the value stored at a-addr in CData.

x.6.2.0440 2VARIABLE CROSS EXT

(“<spaces>name” —)

Extend the definition of 2VARIABLE when executed in TARGET scope to create a
definition for name in the current section of the section type specified by x.6.1.nnnn
VARIABLES.

name Execution: (— a-addr)

a-addr is the address of the first (lowest address) cell of two consecutive cells reserved
by 2VARIABLE when it defined name. A program is responsible for initializing the
contents.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 16

x.6.2.0780 BLANK CROSS EXT

(c-addr u —)

Extend the definition of BLANK when encountered while interpreting in
INTERPRETER or TARGET scopes to write to the host’s image of CData or IData.

x.6.2.nnnn BUFFER: CROSS EXT

(n “<spaces>name” —)

Skip leading space delimiters. Parse name delimited by a space. Create a definition
for name, with the execution semantics defined below. Reserve n address units
starting at the next location in the current UData section.

BUFFER: shall be executed only in TARGET scope. When words defined by
BUFFER: are referenced on the host while interpreting, their behavior is to return the
address of the start of the reserved space.

name Execution: (— a-addr)

a-addr is the address of the space reserved by BUFFER: when it defined name. A
program is responsible for initializing the contents. When words defined by
BUFFER: are referenced on the host while interpreting, their behavior is to return the
address of the start of the reserved space.

x.6.2.nnnn C@C “c-fetch-c” CROSS EXT

(c-addr — char)

Fetch the character stored at c-addr in CData. When the cell size is greater than
character size, the unused high-order bits are all zeroes.

x.6.2.0945 COMPILE, “compile-comma” CROSS EXT

Interpretation: Interpretation semantics for this word are undefined.

Execution: (xt —)

Extend the definition of 6.2.0945 COMPILE, when encountered in a COMPILER
definition, to append the execution semantics of the target definition represented by xt
to the execution semantics of the current target definition.

An ambiguous condition exists if COMPILE, is used in a TARGET definition.

x.6.2.0910 CMOVE “c-move” CROSS EXT

(c-addr1 c-addr2 u —)

Extend the definition of CMOVE when executed in TARGET scope or in an
INTERPRETER definition to write to the host’s image of IData or CData. An
ambiguous condition exists if c-addr1 or c-addr2 doesn’t reside in a defined IData or
CData section.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 17

See: 17.1.0910 CMOVE.

x.6.2.0920 CMOVE> “c-move-up” CROSS EXT

(c-addr1 c-addr2 u —)

Extend the definition of CMOVE> when executed in TARGET scope or in an
INTERPRETER definition to write to the host’s image of IData or CData. An
ambiguous condition exists if c-addr1 or c-addr2 doesn’t reside in a defined IData or
CData section.

See: 17.1.0920 CMOVE>.

x.6.2.nnnn CMOVEC “c-move-c” CROSS EXT

(c-addr1 c-addr2 u —)

Copy u consecutive characters from c-addr1 in CData space to c-addr2 in IData or
(when used in a target definition) UData space, proceeding character-by-character
from lower addresses to higher addresses.

x.6.2.nnnn CVARIABLE CROSS EXT

(“<spaces>name” —)

Skip leading space delimiters. Parse name delimited by a space. Create a definition
for name in the host only, with the execution semantics defined below. Reserve one
character at the next location in the current section of the section type specified by
x.6.1.nnnn VARIABLES.

name Execution: (— c-addr)

c-addr is the address of the space reserved by CVARIABLE when it defined name. A
program is responsible for initializing the contents.

See: 3.3.3.1 Address alignment.

x.6.2.1350 ERASE CROSS EXT

(addr u —)

Extend the definition of ERASE when executed in TARGET scope or in an
INTERPRETER definition to write to the host’s image of CData or IData.

x.6.2.nnnn EQU CROSS EXT

(x “<spaces>name” —)

Skip leading space delimiters. Parse name delimited by a space. Create a definition
for name in the host dictionary only, with the execution semantics defined below.

An ambiguous condition exists if EQU is executed in HOST scope.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 18

name Execution: (— x)

Returns the value x. If an EQU is referenced inside a target colon definition, its value
will be compiled as a literal.

x.6.2.nnnn ORG CROSS EXT

(addr —)

Set the address of the next available location in the active section to addr. An
ambiguous condition exists if addr is not within the active section.

x.6.2.nnnn RESERVE CROSS EXT

(+n — a-addr)

Allocate +n bytes of UData, starting at a-addr.

x.6.2.2295 TO CORE EXT

Interpretation: (x “<spaces>name” —)

Extend the interpretation semantics of TO when executed in TARGET scope to affect a
VALUE defined in TARGET scope. An ambiguous condition exists if name was not
defined by a TARGET VALUE.

Compilation: (“<spaces>name” —)

Extend the compilation semantics of TO when invoked in a TARGET definition to
reference a TARGET VALUE. An ambiguous condition exists if name was not defined
by a TARGET VALUE.

Run-time: (x —)

Store x in name.

See: x.6.2.2405 VALUE, 13.6.1.2295 TO.

x.6.2.2395 UNUSED CORE EXT

(— u)

Extend the definition of UNUSED when encountered in TARGET scope to return the
amount of space remaining in the active section in address units.

x.6.2.2405 VALUE CROSS EXT

(x “<spaces>name” —)

Extend the definition of VALUE when encountered in TARGET scope to create a
definition for name in IData, initialized to x.

