ForthQL User Manual

Easy SQL processing for VFX Forth for Linux

5

Rafael Gonzalez Fuentetaja

Copyright (©) 2008, Rafael Gonzalez Fuentetaja.

ForthQL

User manual
Manual revision 1.00
27 September 2008

Table of Contents

1

Introduction 1
1.1 ADSETACE . vt 1
1.2 R erenCes. . .ottt 1
Forth-SQL Interface.................. 3
2.1 Introduction. 3
2.1.1 Portability. .. .o 3
2.2 Embedding SQL code 3
2.3 Dynamic SQL code. 4
2.3.1 Parameter edition SUPPOTToon it 4
2.4 Processing SQL output 5
2.4.1 Support for OOP ... 5
2.5 Debugging SQL code 7
2.6 Tunning the SQL buffer size...... ... o i 7
2.7 Multithreading 8
2.8 LimItations.oooi e 8
2.9 GlOSSATY ..ttt 9
2.9. 1 SUPPOTE WOTAS . .« oottt e e 9
2.9.2 Generic DB AP 9
2.9.3 SQL Code Compiler Words.ouuuuiiiii e 10
2.9.4 Dynamic SQL Statements 11
SQLite3 Database Interface 13
3.1 Introduction. 13
3. 1.1 Portability 13
3.2 GlOSSATY et 13
3.2 1 Canterface e 13

3.2.2 Generic DB API. ... 14

3.2.3 SQLite3d Specific DB AP 15

Chapter 1: Introduction 1

1 Introduction

1.1 Abstract

An implementation of ForthQL for VFX Forh for Linuz is presented. SQL statements are
embedded within words using CHAR | as separator. Dynamic SQL statements that bound pa-
rameters at runtime are also possible. Result sets are processed row by row by callback words.
ForthQL relies on a simple DB API, where one connection (per thread) to the database is
used. This is enough for most purposes. A sample implementation for SQLite3 is also included.
SQLite3 implementation includes a word set for non-callback processing style outside ForthQL.

1.2 References

1. The Nearly Invisible database or ForthQL, N. J. Nelson. 22th EuroForth Conference Pro-
ceedings, pp. 52-77, available at THE EUROFORTH WEBSITE.

2. VFX Forth for Linux User Manual. The evaluation license for Linux is free. Visit MPE
Website for details.

http://www.
http://www.mpe.com
http://www.mpe.com

Chapter 2: Forth-SQL Interface 3

2 Forth-SQL Interface

2.1 Introduction

This implementation of ForthQL depends on a two basic principles of operation:

e A simple API that hides the details of DBMS connections. Connection/Disconnection
procedures are out of the scope of ForthQL.

e A Callback interface can be established with the DBMS to process the query result set row
by row.

2.1.1 Portability

This module is written in VFX Forth for Linuxz but it can probably be ported easily to other
Forth environments as well.

The following aspects of VFX has been used:
e Exception messages and codes.
e Modules, encapsulating words into modules and exporting words.
e GenlO Architecure. Memory Device.

e MPEisms. Convenience words defined by MPE for its products like ?comp, $CRLR,
ALLOT&ERASE or 7throw

2.2 Embedding SQL code

Examples shown are based on the paper by N. J. Nelson cited in the References section.

The main idea of this interface is to embed multiline SQL statements inside colon definitions as
shown below:

: TEST1
SQL| INSERT INTO delegates \ example comment 1
VALUES (’Chuck’,’Moore’,1) [SQL

SQL statements are started by the word SQL| and ended either with |SQL, |SQL. or |SQL> .
They span one or more lines and Forth comments starting with \ can appear in between. These
comments are typically used to document the SQL code itself.

The SQL statement is compiled into a Z-string inside the current definition (TEST1 in this case)
and sent to the DBMS for execution when the current definition is executed. Apart from these
comments, which are stripped in the actual SQL string, the syntax of the SQL statement depends
on the actual DBMS being used.

Ending word variations |SQL or |SQL> are used whenever zero or one Forth callback action are
used. See glossary section below.

Lack of SQL ending word inside a file will result in "delimiter not found" exception.

4 ForthQL User Manual

2.3 Dynamic SQL code

ForthQL allows not only static SQL statements to be embedded in Forth but also allows for
dynamic SQL statement generation by means of SQL parameters as in the example:
(N
: TEST2

SQL| SELECT cuscode,cusname FROM customers \ Fixed part

WHERE cusid BETWEEN

| LOWLIMIT | AND | HIGHLIMIT \ parameters

|SQL> TESTOUT \ Output

In this example, we build a template SQL statement. Words LOWLIMIT and HIGHLIMIT are
template parameters and will patch the SQL string with proper values at runtime, when TEST2
is executed.

CHAR | is both used as the ending character of the static SQL string (as in the first and third
appearance) and as a Forth word that restarts the SQL string compilation (as in the second
appearance).

SQL parameters are specified like in the example below:
()

:noname \ cal ul --
s" 12" drop -rot move ;
5 CHARS SQLParameter: LOWLIMIT

s'" 100009" drop -rot move ;

6 CHARS SQLParameter: HIGHLIMIT
k J

At compile time, when the template SQL is being built, parameters need to specify how many
space or 'width’ they need in the SQL string. LOWLIMIT needs 5 CHARS and HIGHLIMIT needs 6
CHARS.

At runtime, SQL parameters run an execution token zt This token is for a word that must fill
in just the part of the SQL string cal ul reserved to its parameter. Of course, ul is equal
tothe parameter 'width’. Nameless definitons above will fill reserved spaces with literals 12 and
100009 respectvely.

This mechanism is totally independent from the usual SQL run time parameter binding using
wildcards.

2.3.1 Parameter edition support

The above mechanisms are enough to edit any string needed into the parameter memory area.
However, we can take advantage of VFX GenlO Architecture and use well known words like
TYPE, . , EMIT and friends. The advantages are best appreciated when formatting numbers. The
above example can be re-written as:

Chapter 2: Forth-SQL Interface 5

-

:noname \ cal ul --
[sqlio 12 . sqlio] ;
5 CHARS SQLParameter: LOWLIMIT

:noname \ cal ul --
[sqlio 100009 . sqlio] ;

8 CHARS SQLParameter: HIGHLIMIT
k J

Words [sqlio opens a context where standard I/O is redirected to the cal ul memory region
using the SQL-MemDev GenlO Device. Word sqlio] closes this device and restores standard I/O
to previous values. Raw access to this memory zone is still possible using I0CTL-GENs, but it
should not be necessary in this approach.

Warnings:

e Take into account that word . emits a final space.

e Due to implementaion issues, reserve 1 additional CHAR to your planned parameter width.

2.4 Processing SQL output

Word |SQL just executes the SQL code for a statement that does not produce a result set, like
an insertion into a table (as in TEST1). Of course, other situations will result in the retrieval of
one or more rows in a result set, which can be processed one by one by a Forth word.

Word |SQL> - as shown in TEST2 - will also compile some runtime code and the execution token
for the next word (TESTOUT in this case). The runtime code is responsible to invoke TESTOUT for
each row being retrieved. Some DBMS APIs like SQLite3 has a C callback interface designed
for this purpose. See the proper section for details.

2.4.1 Support for OOP

Extending the concept of |SQL>, another word named |SQL>> lets you specify both a callback
and a client data pointer. This gives some support to integrate callback actions with object
methods.

This feature is highly dependant on the DBMS API and the OOP library used. The following
example is done using SQLite3 and GForth ’objects.fs’ library ported to VEX Forth for Linux.

6 ForthQL User Manual

-

sql-dry-run off
: quote (--) [char] ’ emit ;

[qtype] (cau --)
postpone quote
postpone type
postpone quote

; immediate

creation
SQL| CREATE TABLE IF NOT EXISTS Person(
name TEXT PRIMARY KEY, surname TEXT, age INTEGER);
[SQL.

! persons
SQL| SELECT * FROM Person; |SQL.

object class
cell’, inst-var m-name
celly, inst-var m-surname
cell’, inst-var m-age

end-class Person
N

-

Person methods
protected
:noname \ cal ul -
[sqlio m-name $@ [gtypel] sqlio]
; 16 chars SQLParameter: /name/

:noname \ cal ul -
[sqlio m-surname $@ [qtype] sqlio]
; 16 chars SQLParameter: /surname/

:noname \ cal ul --
[sqlio m-age 7 sqlio]
; 8 chars SQLParameter: /age/

:m (refresh) (colValuex* this --)
0 sql3-$@ evaluate m-age !

;m

:noname (object* nCols colValue** colName** -- ior)
drop nip swap (refresh)
SQLITE_OK

; SQLite3Callback: <<refresh>>
N

Chapter 2: Forth-SQL Interface 7

(N

public
m: (cal ul ca2 u2 age this --) \ overrides construct
0 dup m—name ! m-surname !
m-age ! m-surname $! m-name $!
;m overrides construct

:m save-person (this --)
SQL| INSERT OR REPLACE INTO Person
VALUES(| /name/ | , | /surname/ | , | /age/ |);
|SQL.
;I
:m refresh (this --)
." Refresing age from database for " m-name $@ type cr
SQL| SELECT age FROM Person WHERE name = | /name/

|SQL>> this <<refresh>>
sm

end-methods

n

: Homer s" Homer" ;

: Maggie s" Maggie" ;
: Bart s" Bart"

: Simpson s" Simpson" ;

Homer Simpson 43 Person heap-new constant pl
Maggie Simpson 40 Person heap-new constant p2
Bart Simpson 14 Person heap-new constant p3

s" simpson.db" db-open db-throw creation

pl save-person
p2 save-person
p3 save-person

pl refresh
= J

2.5 Debugging SQL code

VARIABLE SQL-DRY-RUN controls the behaviour of |SQL, |SQL> and [SQL. If set, it will compile
code to type the contents of the SQL buffer and then EXIT. Parameters are seen with its run-
time values into their places. Memory overruns in the SQL buffer are a likely cause of SQL
syntax errors.

This is a compilation flag. To disable it, you must turn it off and reload your code.

2.6 Tunning the SQL buffer size

SQL statements are compiled (as Z strings) inside the current definition in a similar way as
words S" or ." do. The size of this per-word SQL Buffer is is controlled by the VALUE
#SQLBuffer with a default size. However, the user can change this value prior to defining a

8 ForthQL User Manual

given SQL statement to tune for very large statements and to avoid waste of memory space for
short statements.

A buffer too short for a given statement will result in a buffer overflow exception. Forth comments
do not count against this limit.

Words SQLBuffer> and >SQLBuffer, used as a pair surronding the definition, change and restore
to a previous value the SQL buffer size.

VARIABLE SQL-TUNNING controls the printing of compile-time diagnostics on the SQL buffer
memory usage. By default it is turned off.

-

SQL-TUNNING ON
#148 CHARS SQLBuffer>
: MYDEF (--)

SQL| CREATE TABLE IF NOT EXISTS Person(
oid INTEGER PRIMARY KEY, \ object Id
name TEXT,
surname TEXT,
age INTEGER
);
| SQL.

>SQLBuffer
\ and the output is ...

MYDEF SQL Buffer = 148 bytes , used = 148 , wasted = 0O
k

Example above shows the exact amount of tweaking using SQLBuffer>, hence the 0 wasted
bytes.

2.7 Multithreading

ForthQL depends on a simple API DB-EXECUTE or DB-PROCESS This API hides the database
connections. It is up to the actual Forth DBMS driver to make this thread-safe For instance, it
could declare a USER variable DB-HANDLE. to have several threads with its own connection.

Some data structures like SQL-MemDev are conditionally compiled into USER variables if
SQL-MULTITHREAD is non-zero.

2.8 Limitations

e As stated elsewhere, this word set operates on one DB connection or at most one DB
connection per thread.

e There could be race conditions if two threads execute the same dynamic SQL query like
shown in TEST2, giving unpredictable results. Not only the SQL string buffer must should
protected during edition itself at runtime, it should be locked until the SQL statement has
been executed. Solving this problem transparently to the user for this unlikely situation
adds a lot of complexity. The simplest workaround is to duplicate the SQL statement in
two different words (i.e. TEST2 and TEST2’) and let the threads execute each one of them.

Chapter 2: Forth-SQL Interface 9

e SQL-RESULT for SQLite3 is not as nice as presented in Nelson’s paper. The Forth callback
does not know when is the last time to be invoked and this prevents further clean-up actions.

e Defining a maximun field width for a SQLParameter: at compile time is not very flexible.
Text like fields vary much in their contents and you must set an upper limit to them.
Finding such limit is a compromise.

2.9 Glossary
2.9.1 Support words

General purpose words which could be placed elsewhere and not related to ForthQL. They may
be placed in my Eztras project in a future.

Caddr/len strings

: STRING/ \ cal ul u -- ca2 u2
Get the string-matched ca2 u2 from the string-remaining ca! u! and the length u of the original
string. (Jenny Brien).

: /COMMENT \ cal ul -- ca2 u2
Strip trailing Forth backlash comments from a string.

Input Specification and Parsing

: PARSE-AREAQ \ -—cau
Get the as yet unparsed portion of the input buffer. (Jenny Brien).

: PARSE-AREA! \ cau - ;

Set the portion of the input buffer still to be parsed to ca u. Must start within the input buffer!
(Jenny Brien).

: PARSE-AREA/ \ cal ul -- ca2 u2

Get the already parsed string ca2 u2 in the input buffer from the yet unparsed cal u! string.
Similar to what STRING/ does.

: SKIP-CHAR \ cal ul --
Skip 1 CHARS (usualy the SCANned character) from the remaining space cal ul in the Forth
input buffer, updating the input buffer.

Memory operations

: +MOVE \ cal ul ca2 u2 -- ca3 u3
Move memory region ca2 u2 to receiver memory buffer cal ul. Available receiver memory buffer
is now cad ud.

2.9.2 Generic DB API

This simple API is needed for ForthQL. These words must be implemented by the underlying
DBMS Forth driver module. You must include this driver module before ForthQL module.
Connection to DBMS is out of the scope.

Usage of zero-teminated strings (Z-strings) are required to ease interfacing with foreign, C-based
DBMS APIs.

: db-execute \ z-addr -- ior
Execute SQL statement z-addr not returning any output, like table creation or row inser-
tion/update/delete. ior code signals operation result.

10 ForthQL User Manual

: db-process \ z-addr xt -- ior

Execute SQL statement z-addr. When complete, word given by xt is repetidely called, row by
row, to process output. ior code signals operation result.

: db-process-with \ z-addr xtl xt2 -- ior

Execute SQL statement z-addr. When complete, word given by zt2 is repetidely called, row by
row, to process output. ior code signals operation result. zt! is the execution token for a word
that - when executed - return a cell with client data. Client data can be anything, but mostly
will be an object handle for OOP support (the this keyword).

<clientData> VALUE clientDataPtr \ xtl is ’ clientDataPtr.

: this (-- handle) ... ; \ xt1 is ’ this

: db-throw \ ior --

Map DB specific ior into an appropiate user exception and throw it. Exceptions are DBMS
specific.

: db-print \ z-addr --

Print the SQL statement z-addr being executed and its result set nicely formatted.

SQL Buffer management
#256 CHARS Value #SQLBuffer
SQL Memory Buffer default size in bytes.

: SQLBuffer> \ nl -—- n2

Set the current SQL buffer size to nl bytes. Return the old value n2 for latter restoration.
Intended to use in pair with >SQLBuffer. See example in the Tunning the SQL buffer size
section.

: >SQLBuffer \ nl —-
Set the current SQL buffer size to n! bytes.

Variable SQL-TUNNING

Flag. If true, prints the actual size SQL string being compiled so that you can fine tune
#SQLBuffer for that word.

: 7sql-tunning \ cal ul -- cal

Print a summary report of bytes being used for the SQL Buffer in the word being defined.

2.9.3 SQL Code Compiler words
Variable SQL-DRY-RUN

Activate a mode where only SQL compiler words only compile code to print the SQL code. Do
not execute anything on the DBMS. Warining: This is a compile (loadtime) flag, not runtime
option

Exceptions thrown at compile time.

ErrDef SQLDelimErr "No SQL Delimiter | found"
ErrDef SQLBuffOvf "SQL Buffer overflow"
: SQL| \ —- cal ul

Start SQL string compilation, initializing a SQL memory buffer and concatenating verbatim
until following CHAR |. Any backlashed comments are removed. Preserves newline characters.

| \ cal ul - ca2 u2

Resume SQL string compilation to SQL buffer cal wl until next CHAR | is found, as above.
Leave remaining SQL buffer ca2 u2.

Chapter 2: Forth-SQL Interface 11

| SQL \ cal ul --
End current SQL statement compilation. Receives as input the remaining SQL buffer cal u! to
find out and compile the SQL buffer starting address. Compile internaly a call to DB-EXECUTE
with all necessary parameters. At run time, DB-EXECUTE is invoked, which will send the SQL
statement for the DBMS to execute.

| SQL> \ cal ul "action" --
FEnd current SQL statement compilation and compiles the following "action" word. Receives
as input the remaining SQL buffer cal u! to find out and compile the SQL buffer starting
address. Compile a call to DB-PROCESS with all necessary parameters. At run time, DB-PROCESS
is invoked which will send the SQL statement for the DBMS to execute. For each row returned
by the DBMS as the result, it will invoke the xt of "action".

| SQL>> \ cal ul "object" "action" --
End current SQL statement compilation and compiles both the following "object" and "action"
words. Receives as input the remaining SQL buffer cal uI to find out and compile the SQL
buffer starting address. Compile a call to DB-PROCESS-WITH with all necessary parameters. At
run time, DB-PROCESS-WITH is invoked which will send the SQL statement for the DBMS to
execute. For each row returned by the DBMS as the result, it will invoke the xt of "action"
with the xt of "object" as a parameter.

I'sqQL. \ cal ul --
End current SQL statement compilation. Receives as input the remaining SQL buffer cal u1
to find out and compile the SQL buffer starting address. Compile a call to DB-PRINT into the
current definition. At run-time, DB-PRINT is executed which sends the SQL statement to the
DBMS for execution and prints (a more or less nicely formatted) result set.

2.9.4 Dynamic SQL Statements

: SQLParameter: \ xt width -- ; [child] cal ul pfa -- ca2 u2
Define a SQL parameter that will get substituted at runtime when the definition containing the
SQL code is executed. width is the 'parameter width’, that is the amouts of bytes in the SQL
string that must be reserved to be patched later on. Children words receive the remaining SQL
buffer cal ul to just to compile cal width into the word that is defining the SQL statement;
along with the zt and to calculate the remaining buffer. ca2 u2. at is the execution token for
an action word that performs this patching, receiving exactly the given memory area, like:

: parameter-filler (cal width --) ... ;

Support to parameter edition

The following words help parameter edition at runtime by doing I/O at the memory area to fill.
They are not strictly needed but they are quite convenient.

TextBuff: SQL-MemDev
GenlO Memory Device SID. The multithreaded version is a USER variable, that must be initial-
ized per thread with the phrase SQL-MemDev initTextBuffSid.

: +SQLMemDev \ cal ul --

Open the SQL-MemDev GenlO memory device to edit memory zone cal ul. Standard I/O is
redirected to this device. Words like EMIT, . or TYPE write on this region.

: -SQLMemDev \ -~

Close the SQL-MemDev GenlO Memory Device to for parameter edition. Warning: Standard I/0O
is not yet restored to previous value.

[sqlio \ cal ul -- R: -- ip-handle op-handle

12 ForthQL User Manual

Convenience macro for the phrase [io +SQLMemDev . Open the SQL-MemDev memory device,
configures it to use buffer cal u! and redirects standard I/O to it. Intended to use inside a
colon definiton at the start of a SQLParameter action. See the Dynamic SQL code section at the
beginning of this chapter.

: sqlio] \ R: -- ip-handle op-handle

Convenience macro for the phrase ~SQLMemDev io] . Close the SQL-MemDev memory device and
restores standard I/O to its previous settings. Intended to use inside a colon definiton at the end
of a SQLParameter action. See the Dynamic SQL code section at the beginning of this chapter.

Chapter 3: SQLite3 Database Interface 13

3 SQLite3 Database Interface

3.1 Introduction

This module is a Forth DBMS driver to SQLite3. It implements a minimal interface for use
with Forth@QL and an extended interface for SQL3Lite specific operations.

3.1.1 Portability

This module is written in VFX Forth for Linuxz but it can probably be ported easily to other
Forth environments as well.

The following aspects of VFX has been used:
e C Callback Mechanism.
e Exception messages and codes.
e Modules, encapsulating words into modules and exporting words.

e MPEisms. Convenience words defined by MPE for its products like ?comp, $CRLR,
ALLOT&ERASE or 7throw

3.2 Glossary

0 Constant sql-multithread
Compilation option when including this module. All DBMS drivers should test & define this
value.

MODULE SQLITE3

3.2.1 C interface

SQLite3 return codes

Constant SQLITE_OK
Constant SQLITE_ERROR
Constant SQLITE_INTERNAL
Constant SQLITE_PERM
Constant SQLITE_ABORT
Constant SQLITE_BUSY
Constant SQLITE_LOCKED
Constant SQLITE_NOMEM A malloc() failed

Constant SQLITE_READONLY Attempt to write a readonly database

\ Successful result
\
\
\
\
\
\
\
\
Constant SQLITE_INTERRUPT \ Operation terminated by sqlite_interrupt()
\
\
\
\
\
\
\
\
\

SQL error or missing database

An internal logic error in SQLite
Access permission denied

Callback routine requested an abort
The database file is locked

A table in the database is locked

© 00 ~NO Ul WN = O

#10 Constant SQLITE_IOERR Some kind of disk I/0 error occurred

#11 Constant SQLITE_CORRUPT The database disk image is malformed

#12 Constant SQLITE_NOTFOUND \ (Internal Only) Table or record not found
#13 Constant SQLITE_FULL Insertion failed because database is full
#14 Constant SQLITE_CANTOPEN \ Unable to open the database file

#15 Constant SQLITE_PROTOCOL \ Database lock protocol error

#16 Constant SQLITE_EMPTY (Internal Only) Database table is empty
#17 Constant SQLITE_SCHEMA The database schema changed

#18 Constant SQLITE_TOOBIG Too much data for one row of a table

#19 Constant SQLITE_CONSTRAINT \ Abort due to contraint violation
#20 Constant SQLITE_MISMATCH \ Data type mismatch

14 ForthQL User Manual

#21 Constant SQLITE_MISUSE \ Library used incorrectly
#22 Constant SQLITE_NOLFS \ Uses 0S features not supported on host
#23 Constant SQLITE_AUTH \ Authorization denied

#100 Constant SQLITE_ROW \ sqlite_step() has another row ready
#101 Constant SQLITE_DONE \ sqlite_step() has finished executing

SQLite3 data types

1 Constant SQLITE_INTEGER
2 Constant SQLITE_FLOAT

3 Constant SQLITE_TEXT

4 Constant SQLITE_BLOB

5 Constant SQLITE_NULL

.sql3-version

Print the SQLite3 version being loaded The SQLite3 version number is an integer with the value
(X*1000000 + Y*1000 + Z).

3.2.2 Generic DB API

Exceptions
ErrDef SQL3ColumnIndex "Index out of bounds in column widths array"

ErrDef SQL3ColumnWidthError "Column specifier not within range"

The ones below comes from the SQlite3 DBMS itself.

ErrDef SQL3_ERROR "SQLite3: SQL error or missing database"
ErrDef SQL3_INTERNAL "SQLite3: An internal logic error in SQLite"
ErrDef SQL3_PERM "SQLite3: Access permission denied"

ErrDef SQL3_ABORT "SQLite3: Callback routine requested an abort"
ErrDef SQL3_BUSY "SQLite3d: The database file is locked"

ErrDef SQL3_LOCKED "SQLite3: A table in the database is locked"
ErrDef SQL3_NOMEM "SQLite3: A malloc() failed"

ErrDef SQL3_READONLY "SQLite3: Attempt to write a readonly database"
ErrDef SQL3_INTERRUPT "SQLite3: Operation terminated by sqlite_interrupt()"

ErrDef SQL3_IOERR "SQLite3: Some kind of disk I/0 error occurred"
ErrDef SQL3_CORRUPT "SQLite3: The database disk image is malformed"
ErrDef SQL3_NOTFOUND "SQLite3: (Internal Only) Table or record not found"
ErrDef SQL3_FULL "SQLite3: Insertion failed because database is full"

ErrDef SQL3_CANTOPEN "SQLite3: Unable to open the database file"
ErrDef SQL3_PROTOCOL "SQLite3: Database lock protocol error"

ErrDef SQL3_EMPTY "SQLite3: (Internal Only) Database table is empty"
ErrDef SQL3_SCHEMA "SQLite3: The database schema changed"
ErrDef SQL3_TOOBIG "SQLite3: Too much data for one row of a table"

ErrDef SQL3_CONSTRAINT "SQLite3d: Abort due to contraint violation"
ErrDef SQL3_MISMATCH "SQLite3: Data type mismatch"

ErrDef SQL3_MISUSE "SQLite3: Library used incorrectly"

ErrDef SQL3_AUTH "SQLite3: Authorization denied"

Chapter 3: SQLite3 Database Interface 15

Functions
: db-open \ cal ul -- ior

Open a connection to a SQLite3 database file given by path cal wl. Returned handle is stored
in SQL3-HANDLE USER variable. Does nothing if already open (SQL3-HANDLE is non-zero).

: db-close \ -- ior
Close a connection to a SQLite3 database. Handle is taken from SQL3-HANDLE. Clears
SQL3-HANDLE as well. Does nothing if already closed (SQL3-HANDLE is zero).

: db-errmsg \ ior -- cal ul
Get an error description message cal w1 from an jor. Warning: In SQLite3, ior is not looked
up, the most recent error produced is retrieved.

: db-execute \ z-addr -- ior
Execute SQL statement z-addr not returning any output.

: db-process \ z-addr xt -- ior
Execute SQL statement z-addr. When complete, word given by zt is repetidely called, row by
row, to process output.

: db-process-with \ z-addr xtl xt2 -- ior

Execute SQL statement z-addr. When complete, word given by zt2 is repetidely called, row by
row, to process output. ior code signals operation result. zt! is the execution token for a word
that - when executed - return a cell with client data. Client data can be anything, but mostly
will be an object handle for OOP support (the this keyword).

<clientData> VALUE clientDataPtr \ xtl is ’ clientDataPtr.

: this (-- handle) ... ; \ xt1 is ’ this

: db-throw \ ior --

Map SQLite3 ior into an appropiate VFX Forth exception and throw it.

: db-print \ z-addr --

Print the SQL statement z-addr being executed and its result set nicely formatted.

: SQLite3Callback: \ xt --

Declare a SQLite3 callback that, when called by the Linux C interface it will execute in turn
the action whose execution token is xt The action Forth word must have a signature like its C
counterpart:

int action(void* cliData, int nCols, char* colValue[], char* colName[]);

: sql3-$e@ \ a-addr i -- ca u

Retrieve a string ca w given the base array of pointers a-addr to Z-strings and the index into
the array 7. Intended to retrieve contents from the callback Forth word being used to process
rows in the ForthQL. See SQLite3Callback:.

3.2.3 SQLite3 Specific DB API

This API export function for a non callback driven interface. Iteration on the result set is done
by the application itself.

: sql3-prepare \ z-addrl -- z-addr2 ior
Precompiles a SQL statement z-addrl for later execution through one or more calls to

SQL3-STEP. Only a single SQL statement is compiled, remaining is left as z-addr2 for sub-
sequent calls to SQL3-PREPARE. An empty statement set SQL3-STH to zero.

: sql3-step \ -- ior

16 ForthQL User Manual

Get next row from the result set. ior is SQLITE_ROW if result set not complete or SQLITE_DONE
otherwise. A different value signals an error.

: sql3-reset \ -- ior

Reset the execution of a SQL statement.

: sql3-#cols \ --n

Return the number of columns in the result set. Only works after calling SQL3-PREPARE.

: sql3-finalize \ -- ior

Clean up the result set after being iterated. Las thing to do after a SQL3-PREPARE and zero or
more SQL3-STEPs. ior signals an error condition.

: sql3-NULL \ -- cal ul

The verbatim NULL string with its four characters.

: sql3-col-name \'n--cau

Return the column name for column n. NULL datatype is retrieved as the NULL string.

: sql3-col-text \'n--cau

Return the column value as ASCII text for column n. NULL datatype is retrieved as the NULL
string.

: sql3-col-type \ nl -- n2

Return the column type for column n! as defined in one of the SQLITE constants SQLITE_
INTEGER through SQLITE_NULL.

: sql3-numeric? \ nl -- flag

True if column type n! is either SQLITE_INTEGER or SQLITE_FLOAT

Pretty printing section

40 Constant MAXWIDTH
Maximun character width for a given column.

32 Constant MAXCOLS
Maximun number of columns to pretty-print.

: th-colwidth \ nli--
Set the ith column width to nZ. Throw SQL3ColumnIndex if i out of bounds or SQL3ColumnIndex
if n1 is too wide.

: colwidth \ nl --
Set all column widths to nl. Throw SQL3ColumnIndex if nl is too wide.

: +colwidth \ nl —-
Increment all column widths to n1. Throw SQL3ColumnIndex if the resulting width is too wide.

SQLite3Callback: SQL-RESULT \ client* nCols colValues* colNames* —-- ior
Print a query result set, like |SQL. but done as |SQL> SQL-RESULT. Printed formatting has
deficiencies. Use |SQL. instead.

	Introduction
	Abstract
	References

	Forth-SQL Interface
	Introduction
	Portability

	Embedding SQL code
	Dynamic SQL code
	Parameter edition support

	Processing SQL output
	Support for OOP

	Debugging SQL code
	Tunning the SQL buffer size
	Multithreading
	Limitations
	Glossary
	Support words
	Generic DB API
	SQL Code Compiler words
	Dynamic SQL Statements

	SQLite3 Database Interface
	Introduction
	Portability

	Glossary
	C interface
	Generic DB API
	SQLite3 Specific DB API

